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A solution to the SU(n) external state labelling problem based 
upon a U(n - 1, n - 1) group: I. General theory 

C Quesnet 
Physique ThCorique et Mathimatique C P  229, Universite Libre d e  Bruxelles, Bd du  
Triomphe, B 1050 Brussels, Belgium 

Received 25 February 1986 

Abstract. The state labelling problem arising in the reduction of the direct product o f  a p 
positive-row U ( n )  irreducible representation [ h , .  . . h,O] with a q negative-row one  [0 
- h i . .  .- h i ]  into a sum of mixed U ( n )  irreducible representations [ k ,  . . . k p O -  kb  . . . - k ; ]  
is solved by using the complementarity between U ( n )  a n d  U(p ,  9 )  within some positive 
discrete series irreducible representations of U( pn, 4"). This complementarity enables us 
to analyse the problem in terms of the group chain U(p,  q )  3 U ( p )  x U ( q )  instead o f  
U(  n ) x U(  n )  2 U(  n ). For the most general SU( n )  irreducible representations corresponding 
t o p = q = n - I ,  t he re l evan tg roupcha in i s the re fo re  U ( n - l , n - 1 ) 3 U ( n - l ) x U ( n - l ) .  
In such a case, the additional labels include those of an  intermediate U ( n  - 1) irreducible 
representation [ h i  . . . h;t-l], as well as  the additional labels solving the state labelling 
problems for the products [ k ,  . . .  k, ,  _ , I  x [ h ;  . . .  h, ' ,- ,]  and  [ k ;  . . .  k ; , - , ] x [ h ;  , . .  h; , - , ]  o f  
U ( n  - I ) irreducible representations. Hence the proposed solution reflects in a direct way 
the operation of King's branching rule for the chain U ( n )  x U ( n )  3 U ( n ) ,  supplemented, 
whenever necessary, with King's modification rule. 

1. Introduction 

I t  is well known that the S U ( n )  external state labelling problem is equivalent to the 
internal state labelling problem for the chain U(  n )  x U( n )  2 U( n )  when only ( n  - 1)- row 
U(  n )  irreducible representations (irreps) are considered. Over the past 25 years, the 
latter has been a topic of considerable research interest. Since the pioneering work of 
Moshinsky (1962, 1963), Baird and Biedenharn (1964, 1965) and Hecht ( 1965), various 
solutions have been discussed in connection with either non-orthonormal or orthonor- 
mal bases. 

Among the former, one finds the solution initially proposed by Moshinsky (1962, 
1963) and further developed by Brody er a1 (1965). This solution, based upon the 
elementary permissible diagram ( EPD)  method (Moshinsky and Syamala Devi 1969, 
Sharp and Lam 1969), leads to factorised, and hence highly tractable, bases, whose 
characterisation is completed by the exponents of some of their factors. 

Among the latter, one finds the Baird and Biedenharn (1964, 1965) canonical 
solution, further studied by Biedenharn and co-workers (Biedenharn et a1 1985 and 
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references quoted therein). This approach uses SU( n )  irreducible unit tensor operators, 
whose labelling is completed by an operator pattern. The canonical solution has been 
shown to be endowed with many nice structural properties. In the SU(3) case, it has 
recently been given a global algebraic formulation in the framework of an S0(6 ,2 )  
model (Biedenharn and Flath 1984, Bracken and MacGibbon 1984, Deenen and Quesne 
1986); it has also led to a practical algorithm for the calculation of SU(3) Wigner and 
Racah coefficients (Draayer and Akiyama 1973). 

The motivation for still another contribution to this much debated subject comes 
from a recent series of papers (Deenen and Quesne 1983, Quesne 1984, 1985b), where 
new solutions to the U( n) 2 O( n )  and U(n) 3 USp(n) state labelling problems were 
proposed for the d-row U( n )  irreps. These solutions embody substantial group theoreti- 
cal information since they clearly exhibit how the internal state labelling problem for 
U( n) I> O( n )  or U( n) 2 USp( n) can be reduced to the external state labelling problem 
for U( d ) ,  according to Littlewood’s (1950) branching rule, supplemented, whenever 
necessary, with Newell’s (1951) modification rules (see also King 1971). In their 
derivation, a key role is played by the complementarity relationship (Moshinsky and 
Quesne 1970, Howe 1979) between the group chains U(n) 3 O ( n )  and Sp(2d, R )  2 
U(d),  on the one hand, and U(n)  2 USp(n) and SO*(2d)  2 U(d)  on the other hand 
(Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and Vergne 1978, 
Gelbart 1979, Quesne 1985a). 

Whether a similar solution based upon complementarity is possible for the SU( n )  
external state labelling problem is the question we will positively answer within the 
present series of papers. Although both the EPD and the Baird and Biedenharn solutions 
use complementarity properties, the former between the chains U( n )  x U( n )  3 U(n) 
and U(2n -2) 3 U(n - l ) + U ( n  - 1) and the latter between both U(n)  factors in the 
sequence U( n2) 3 U( n )  x U( n) 1 U( n), here we have in mind a different complemen- 
tarity: it relates the chain under consideration, U( n) x U( n) 3 U( n), with another one 
involving a non-compact group, as in our previous work. 

The starting point of our analysis will be the recently reviewed (King and Wybourne 
1985, Quesne (1986) complementarity between U( n) and U(p, q )  within some positive 
discrete series irreps of U( pn,  q n ) ,  characterised by a single label [ p ]  (Gross and 
Kunze 1977, Kashiwara and Vergne 1978, Gelbart 1979). The U(n) irreps appearing 
in the reduction of the U(pn, qn) irreps [ p ]  are mixed irreps, specified by a ( s p )  
positive and b ( s q )  negative labels (Flores 1967, Flores and Moshinsky 1967, King 
1970). We shall henceforth refer to such irreps as a positive-row and b negative-row 
ones. 

We shall prove that the state labelling problem arising in the reduction of the direct 
product o f p  positive-row with q negative-row U(n)  irreps can be solved by considering 
the group chain U( p ,  q )  2 U( p )  x U( q ) ,  complementary with respect to U( n )  x U(n) 3 

U(n) when dealing with such irreps. For arbitrary SU(n)  irreps, our solution to the 
SU( n )  external state labelling problem is therefore based upon the sequence of groups 
U(n-1,  n-1) 2 U ( n  - 1 ) x U ( n - 1 ) .  

In § 2, we review the SU(n) external state labelling problem for the product of p 
positive-row with q negative-row irreps. In § 3, assuming p + q s n, we analyse such 
a problem in terms of the two complementary chains U( n) x U( n )  2 U( n )  and U( p ,  9 )  3 
U(p)  x U(q). In P 4, we construct bases of the U(n)  subgroup scalar irreps and, in 
§ 5, we use them to solve the SU( n )  external state labelling problem for arbitrary irreps 
of the U(n) subgroup in the case where p + q s n. In § 6, we extend our solution to 
the case where p + 4 > n. Finally, § 7 contains the conclusion. 
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I 

2. The SU(n) external state labelling problem 

> n - a  

The SU( n )  external state labelling problem can be discussed in terms of the group chain 

U ( n )  x U ( n )  2 U(n)  (2.1) 

by declaring an  equivalence relation on U(n)  irreps: 

[h ,+c ,h ,+c  ) . . . ,  h ,+c] - [h ,h*  . . .  h , ]  (2.2) 

for c a finite integer. Here h , ,  h z ,  . . . , h,  are any (positive, zero or negative) integers 
subject to the conditions h ,  2 h,  2. . . 2 h, .  

Let us realise the generators of the first U(n)  group in equation (2.1) in terms of 
pn boson creation and  annihilation operators T ~ ~ ,  el,, i = 1,. . . , p ,  s = 1,. . . , n, as 
follows: 

where p zs n - 1. The operators S:, differ from the usual ones by a constant i p s , , ,  
whose introduction will later on prove convenient. It affects neither their commutation 
relations, nor their hermiticity properties, given by respectively 

and 

In such a realisation, the creation operators vis form a contravariant U(n)  vector, while 
the annihilation operators t,, form a covariant one. The U ( n )  irreps are characterised 
by their highest weight { h i  + i p , .  . . , h, + f p ,  (fp)"-"}, where hi,. . . , h, are a positive 
integers such that a 6 p  and h ,  2.. .a h,.  We denote them in short by [ h ,  . . . h,O], 
where the dot over the zero means that it appears n - a times (in general, a dot over 
a numeral implies that this numeral is repeated as often as necessary). They can be 
represented by a Young diagram of the form 
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where, counting from top to bottom, on the right of the vertical line there are h, boxes 
in the sth row for s = 1, .  . . , a and no boxes in the remaining n - a  rows. 

For the generators of the second U(n) group in equation (2.1), let us choose a 
different realisation in terms of qn pairs of boson creation and annihilation operators 
q17,  t17, i = p + 1, . . . , d, s = 1, . . . , n, namely 

where q s n - 1 and d = p + q .  I t  is straightforward to check that the operators S:, 
satisfy the same commutation relations and hermiticity properties as the operators P : f .  
In the realisation (2.7), the creation operators qls form a covariant U(n) vector, while 
the annihilation operators t17 form a contravariant one. The corresponding U( n )  irreps 
{ ( i q ) " - b ,  - h b - i q , . . . ,  - h : - i q } = [ O - h b . . .  - h i ]  are characterised by b negative 
integers - h b , .  . . , -h' , ,  such that b 6 q and h', 3. . .3 hb.  They can be represented by 
a generalised Young diagram of the form (Flores 1967, Flores and Moshinsky 1967) 

1 n - b  

where, counting from bottom to top, on the left of the vertical line there are h :  boxes 
in the sth row for s = 1, .  . . , b, and no boxes in the remaining n - b rows. 

The U ( n )  subgroup of U ( n ) x  U ( n )  is generated by the operators 

Whenever p + q s n ,  its irreps { k l + $ ( p - q ) ,  . . . ,  k , + i ( p - q ) ,  [ i ( p - q ) ] " - " - ' ,  -kA+ 
i ( p - 4 1 ,  . . . ,  -kl+t(p-q)}=[kl...k,0-k6...-k1]arespecified b y a  positiveand 
b negative integers, denoted by k , ,  . . . , k, ,  and - k b , .  . . , - k {  respectively, and satisfy- 
ing the conditions a < p ,  b S q, k ,  3. . .3 k,  and k', >. . .> kb (Flores 1967, Flores and 
Moshinsky 1967, King 1970). They can be represented by a generalised Young diagram 
of the form (Flores 1967, Flores and Moshinsky 1967) 
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Pka 

where, counting from top to bottom, on the right of the vertical line there are k ,  boxes 
in the sth row for s = 1 , .  . . , a, and, counting from bottom to top, on the !eft of the 
vertical line there are k :  boxes in the sth row for s = 1 , .  . . , 6, while there are no boxes 
in the remaining n - a  - b rows. 

The reduction of the product of a p positive-row U ( n )  irrep [ h ,  . . . h,O] with a q 
negative-row one [ 0 - h i  . . . - h i ]  into a sum of ~ ( n )  irreps, 

[hl . * * h p O 1  L0-h: * .  * - h i ] &  c m [ h ,  h , O l [ O - h q  - h l ] [ k l  k , O - k ,  - k l ]  
k l  k, 
k l  k q  

X [ k , .  . . k , O - k b . .  .- k ' , ]  (2.11) 

where mPCT7 denotes the multiplicity of 7 in p x (T and k,, ,  = . . . = k, = k b T ,  = . . . = kb = 0 
for some a s p and b s q, can be determined by using a reformulation of the Littlewood- 
Richardson rule (1934), valid for mixed irreps (Flores 1967, Flores and Moshinsky 
1967, King 1970). Alternatively, one can apply the following result for the multiplicities 
(King 1970): 

(2.12) 

where the summation is taken over q non-negative integers h i , .  . . , hi,, subject to the 
conditions h ;  2 .  . .2 h i ,  and the multiplicities on the right-hand side, referring to 
positive-row U (  n )  irreps, can be calculated by means of the standard Littlewood- 
Richardson rule. In  equation (2.12), we have assumed that q s p .  For S U ( n )  irreps, 
the validity of this hypothesis can always be ensured by using equation (2.1). 

Whenever p + q >  n, ( 2 . 1 1 )  and (2 .12 )  are still valid. However, on the right-hand 
side of (2.1 l ) ,  there may appear non-standard U ( n )  irreps, corresponding to inadmiss- 
ible Young diagrams (diagrams with positive and negative blocks within the same 
row). Such non-standard irreps have to be converted into standard ones, associated 
with admissible Young diagrams (diagrams of type (2.10) with a + b s n ) ,  by using a 
modification rule (King 1971). In  the cases where n = 3, p = q = 2 ,  and n = 4, p = q = 3, 
for instance, the latter is 

[ k ,  k2 - k i  - k i ]  = O  whenever k2 and k ;  # 0 (2.13) 
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and 

[ k ,  kZk3 - k i -  k ' , ]  = [ k ,  kz - k j  - k i -  k ' , ]  = O  

[ k ,  kzl - 1 - k ; -  k : ]  = - [ k ,  k z -  k ;  - k i ]  

[ k ,  k ,  k ,  - kj  - k ; -  k ' , ]  = O  

respectively. In general, for arbitrary n, p and q values, the standard U( n )  irreps one 
is left with are of the type [ k ,  . . . kn-q+cr  - k $ - < , .  . . - k ' , ] ,  where k , ,  . . . , k n - q + v ,  k', , . . . , 
k $ _ ,  are non-negative integers, subject to the conditions k ,  2. . .> kn-q+c,  and k', 2. . .a 
k $ - , ,  and v is any integer belonging to the set { 0 , 1 , .  . . , p + q  - n}. Since the 
modification rule complicates the reduction procedure quite a lot, we shall leave the 
discussion of the case p + q > n until § 6 and from now on assume p + q s n. 

To conclude the present section, let us determine the number of missing labels in 
the reduction of U(n)  x U(n)  irreps of the type [ h ,  . . . h,0] x [0- hb . . . - h ' , ] .  Since 
the labels of a generic U( n )  irrep [ k ,  . . . k, 0 - k $  . . . - k ' , ]  contained in such a product 
are linked by the relation 

whenever k,  or k j  # 0 

(2 .14)  

for all other cases with k,  and k ;  # 0 

(2 .15)  

where (Y and p go from 1 to p ,  and 1 to q, respectively, there are only p + q - 1  
independent labels. On the other hand, the number of internal labels, necessary to 
completely specify the states of a degenerate U(n)  irrep with n - p  vanishing labels, 
is equal to p n  - fp (  p + 1 )  (Seligman and Sharp 1983). Hence, for a generic U( n )  irrep 
[ k ,  . . . kpO - k $  . . . - k l ] ,  the number of missing labels is given by 

[ p n  - f p ( p +  1 ) 1 + [ q n  - f q ( q +  l ) l - ( p +  4 - l ) - [ ( p + q ) n  -b+ q ) ( p + q  - 1 ) l  
= (P- 1 N q - 1 ) .  (2 .16)  

In the next section, we shall define a complementary chain with respect to ( 2 . 1 )  
and reformulate the SU(n) external state labelling problem in terms of this new 
sequence of groups. 

3. The SU(n) external state labelling problem in terms of two complementary chains 

Let us consider the operators Pl i ,J l ,  i, j = 1 , .  . . , d, s, t = 1 ,  . . . , n, defined by 

if i, j = 1, . . . , p 
if i, j = p + 1 ,  . . . , d 
if i = 1 , .  . . , p and j = p +  1 , .  . . , d 
if i = p + 1, . . . , d a n d j  = 1 , .  . . , p 

L,,, 

!'Y, J l  

&,J t  

( 3 . 1 )  1 p l Y , J f =  

where 
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and the commutation relations 

where 

and 

+1 
-1 

if  i =  1, .  . . , p  
i f i = p + l , .  . . , d. 

Hence they generate a U ( p n ,  qn)  group (Quesne 1986). Two U ( p n ,  qn)  subgroup 
chains (King and Wybourne 1985) play an important role in the discussion of the 
SU( n )  external state labelling problem. 

The first chain is 

[ h i .  . .  h,O] [ 0 - h b . .  . - h i ]  [ h ,  . .  . h p ]  [ h ; ,  . . hb] 

U(pn ,  qn)  3 W p n )  x U ( q n )  2 [ U ( n )  x U ( n ) l  x [ U ( P )  x U ( q ) l  
(3.7) 

[ P I  [NO1 ["OI U 
U ( n )  

[kl . . . k , O - k b . .  .-ki] 

where U (  p n )  x U ( q n )  is the maximal compact subgroup of U ( p n ,  qn)  and U ( p n ) ,  
U ( q n )  are generated by the operators E,7.1f, i , j  = 1, . . . , p ,  s, t = 1,.  . . ,n, and E,,,/,, 
i, j = p  + 1, . . . , d,  s, t = 1,. . . ,n, respectively. To define the U (  n )  and U( p )  subgroups 
of U ( p n ) ,  we contract as usual its generators over index i or s, thereby obtaining the 
operators P:,, s, t = 1,. . . , n, defined in (2.3), and the operators E, =E7 E,,,,,, i , j  = 
1 , .  . . , p. For the U ( n )  and U ( q )  subgroups of U ( q n ) ,  we proceed by the same way, 
then apply to the U ( n )  generators the automorphism of the u(n)  algebra 

thereby getting the operators P'l,, s, t = 1, .  . . , n, defined in (2.7), and the operators 
E,] = 2 ,  E,,,lv, i , j  = p +  1, .  . . , d.  It follows that the chain (2.1) belongs to the sequence 
of groups (3.7). 

In the realisation (3.1), the U( pn,  qn)  group has only positive discrete series irreps 
[ p ] ,  specified by a single (positive, zero or negative) integer p, related to the eigenvalue 
p + i ( p  - q ) n  of the first-order Casimir operator (Quesne 1986) 

(3.9) 

In (3.7), we have indicated below or above each U ( p n ,  qn)  subgroup the labels 
characterising its irreps contained in a given U (  pn,  qn)  irrep [ p ] .  The U(pn) and 
U ( q n )  irreps are denoted by their highest weight I N + $ ,  ( ~ ) p n " - l } = [ N O ]  and I N ' + ; ,  
($)""-'} = [ N'O] respectively. Here N and N '  are two non-negative integers satisfying 
the condition N - N'  = p. Since U( p )  and the first U( n) subgroup are complementary 
(Moshinsky and Quesne 1970) within any irrep [NO] of U ( p n ) ,  their irreps are 



776 C Quesne 

characterised by the same partition of N into p non-negative integers h , ,  . . . , h,, 
(Moshinsky 1963). A similar property holds true for U ( q )  and the second U ( n )  
subgroup because the automorphism (3.8) transforms an irrep [ h ;  . . . h:O] of U ( n )  
into [0- h: . . .- h’,] and therefore preserves the complementarity relation between 
U ( q )  and U ( n )  within the irreps [N’O] of U(qn) .  

The second relevant subgroup chain is 

[ k ,  . . .  k,,; k ;  . . .  k;] [ k ,  . . .  k,,O-k: . . . -  k; ]  

U(pn, qn)  = U ( p , q )  x U ( n )  (3.10) 

[ P I  U 
U ( p ) x U ( q )  

[ h ,  . . . h,,][h’, . . . h:] 

where the U ( n )  and U ( p )  x U ( q )  groups are the same as in (3.7), i.e. are generated 
by the operators 9,,, s, t = 1 ,  . . . , n and E,,, i , j  = 1, . . . , p ,  or i , j  = p + 1, . . . , d, respec- 
tively. The only group appearing in (3.10), and not present in (3.7), is U(p, q ) .  Such 
a group is generated by the operators (Quesne 1986) 

I E, if i, j = 1, . . . , p 
if i, j = p + 1, . . . , d 
if i =  1, .  . . , p and j = p + l , .  . . , d 

(3.11) 

if i = p + l , .  . . , d a n d j =  1, .  . . , p  

where D,, D,, and E ,  are the contractions over s of the operators (3.2). The operators 
P,, satisfy commutation relations similar to (3.4) with g,, = E ) & ,  substituted for g,$. , , ,  
and moreover they commute with gY,. 

In (3.10), we have indicated below or above each subgroup the labels characterising 
its irreps contained in a given irrep [ p ]  of U(pn, qn) .  The U(p, q )  and U ( n )  groups 
are complementary within any irrep [ p ] ,  the branching rule for the latter being (Quesne 
1986) 

(3.12) [ p ] J  C ( [ k , .  , .  k,,; k‘, . . .  k:]x[k, . . .  k,,O-kl . . .  - k ; ] )  
!- hp 
hi A ,  

where the summation runs over all the partitions [ k ,  . . . k,,] and [ k ;  . . . k;] into p or 
q non-negative integers, subject to the condition C,, k ,  - Zo k &  = p. The U(  p ,  q )  irreps 
are positive discrete series ones, specified by their lowest weight {k,, + i n , .  , . , k ,  + i n ;  
k : + i n , .  . . ,  k ’ , + k n } = [ k ,  . . .  k,; k :  . . .  kk]. The U ( n )  and U ( p ) x U ( q )  irreps are of 
course the same in (3.7) and (3.10). 

Comparing (3.7) with (3.10), we obtain the following two chains of complementary 
groups: 

[hl . . .  h,O] [0 -hb  ...- h j ]  [ k  , . . .  k p O - k b  . . . -  ki] 
U ( n ) x  U ( n )  2 U ( n )  (3.13a) 

U ( P ) X  U(q)  = U(P, 9)  
[ h ,  . ’ * hpl [ h i . .  . hb] [ k ,  . . . k p ;  kl . . . kb]  (3.13 b )  

where we have written the pairs of complementary groups (and their respective irreps) 
one below the other. 
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Let us now consider the highest weight states ( HWS) P(  ~ , ~ ) 1 0 )  of all the equivalent 
U( n )  subgroup irreps characterised by [ k ,  . . . kFO - kb . . . - k ' , ]  and contained in an  
i r rep[h ,  . . .  h,,O]x[O-h~ . . . -  h i ]  o f U ( n ) x U ( n ) .  Here10)isthebosonvacuum state 
and P (  T , ~ )  is a polynomial in the boson creation operators v,,, i = 1,. . . , d, s = 1, . . . , n. 
Such HWS are the simultaneous solutions of the system of equations: 

From the complementarity of chains ( 3 . 1 3 ~ )  and (3.13b), it follows that the 
simultaneous solutions of (3.14) are also the HWS of all the equivalent U ( p )  x U(q)  
irreps characterised by [ h ,  . . . h,,] x [ h i  . . . h:] and contained in a U(p, q )  irrep 
[ k ,  . . . k F ;  kl . . . kb] .  In other words, the state labelling problems for both complemen- 
tary chains are completely equivalent. I f  we denote by w a set of ( p  - 1) x ( q  - 1) 
additional labels, distinguishing between repeated U(  n )  irreps contained in a given 
U(  n )  x U( n ) irrep-or equivalently between repeated U( p )  x U( q )  irreps contained in 
a given U(p, q )  irrep-the simultaneous solutions of (3.14) can be written as 

(3.151 1 [ k ,  . . .  k,,; k {  . . .  k i ]  
w [ h , .  . . h , , ] [h{ .  . . h l ] ;  

[ h ,  . . .  h,,O][O-h: . . . -  h i ]  
~ [ k , .  . . k ,O-k; .  . . - k { ]  =A,P , (~ , , )10 )  

(max) (max) (max) 

where the right-(left-)hand part of the ket characterises the irreps of the chain ( 3 . 1 3 ~ )  
((3.13b)) and A, is some normalisation coefficient (whose dependence upon the irrep 
labels has not been indicated). 

In § 5, we shall construct the set (3.15), thereby showing how the ( p  - 1)  x ( q  - 1) 
additional labels o can be chosen. For such purpose, we shall need the (unique) 
solution of (3.14) for the special case of a U ( n )  subgroup scalar irrep that we shall 
determine in 3 4. 

4. The case of a U(n) subgroup scalar representation 

Equation (2.12) shows that the U ( n )  scalar irrep [0] is contained with multiplicity one 
in the U ( n )  x U ( n )  irreps [ h ,  . . . 4 0 1  x [ 0 -  h, . . . - h,], while it does not appear in  the 
remaining irreps. We shall henceforth denote the U ( n )  x U ( n )  irreps containing the 
irrep [ O ]  of U ( n )  by thesymbol  [ h i  . . .  h:O]x[O-h;  . . . -  h i ] .  
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According to (3.15), the unique solution of (3.14) corresponding to the scalar case 
can be written as 

= A'P'(7is)lO) (4.1) 1 [ O ;  O] [ h i . .  . h;O][O-h;.. . - h i ]  
[ h i . .  . hiO][h;. . . h i ] ;  [Ol 

(max) (max) 
no additional label w being needed. Since the lowest weight state ( LWS) of the U (  p, q) 
irrep [O; 01 is the boson vacuum state (Quesne 1986) and the U(p, q )  generators D, 
annihilate this state while the operators E ,  reduce to the constants nsij when acting 
upon it, all the basis states of the U(p, q)  irrep [O; 01 can be obtained from 10) by 
applying a polynomial in the remaining generators D i .  Hence, in (4.1), we may write 

P ' ( q , c )  = P'(DL). (4.2) 
The explicit form of P'(DZ)  can be found by solving (3.14) for the appropriate 

values of the quantum numbers. This is most easily done by applying the EPD method 
(Moshinsky and Syamala Devi 1969, Sharp and Lam 1969). There are q EPD, corre- 
sponding to the U(n)  x U ( n )  irreps [ lob]  x [O(-l)p], p = 1 , .  . . , q, respectively. Their 
nws can be written as Dr2. .p , , ,+Ip+2 . . . , ,+p~O) ,  where 

D T ~  ... p , p + l p + *  . . . p i  =C  ( - l ) T i ~ ~ , ~ , , , + , ~ ~ ~ , ~ ~ , , + 2 ~  . . . ~ b . , r , p + p )  (4.3) 
Ti 

and the summation is carried out over the p !  permutations of the indices p + 1 ,  p + 
2, . . . , p + p. In terms of them, the polynomial P"(  0;) is 

P ' (  D;) = fi ( Di;*...p,p +1 ,+2 . . .p+p)  h p  - h p + l  (4.4) 

where h,,, = 0. It will be shown elsewhere (Quesne 1987) that the normalisation 
coefficient A" appearing in (4.1) can be determined by using a coherent state representa- 
tion of U(p ,  q )  and is given by 

p = ,  

5. The general case for p + q < n 
Let us consider (3.14), where h , ,  . . . , h,, h l , .  . . hh,  k l , .  . . k,,, and k l , .  . . , kb now 
assume arbitrary values compatible with (2.1 1) and (2.12) but p arid q are still restricted 
by the condition p + q s n. Since their simultaneous solutions (3.15) belong to a U( p ,  q )  
irrep [k, . . . k,,; k', . . . kb], let us first construct the carrier space of the latter, and then 
search for the U( p )  x U (  q )  H ws it contains. 

The LWS of a U(p,  q)  irrep [k,  . . . k,; k;  . . . kh] is at the same time the LWS of a 
U ( p ) x  U(q) irrep[k, . . . k, ]x [k{ .  . . kb]. In the notations of (3.15), the HWS of the 
latter, which is also of highest weight in U(n) ,  can be written as 

[k,  . . .  k,; kl . . .  kb] [k ,  ... k,O][O-k: . . . -  ki] 
[ kl . . . k,,][ k; . . . kb]; [ kl . . . k,,O - k :  . . . - k;] 

(max) (max) ( m a 4  
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where no additional label w is needed. The explicit form of I‘( q,,) is given by (Quesne 
1986) 

where k,,,, = kb,, = 0 and q,, 
the normalisation coefficient A is equal to (Brody et a1 1965) 

c, is defined by a relation similar to (4.3). In (5.1), 

- 1  I /2  

A = [ (  o < u ’  R ( k u - k o . + n ’ - a ) ) (  o = l  fi ( k , + p - a ) ! )  ] 
x [ ( P ‘ P  fi , ( k &  - k & ,  + p ’ - p )) ( P = l  fi ( k &  + - p ) !) I]  ‘ I2 ,  (5.3) 

From the HWS (5.1), we can generate all the basis states of the U (  p )  x U ( q )  irrep 
[ k ,  . . . k,] x [ k’, , , . kb] by applying appropriate U (  p ) ,  U( p - l ) ,  . . . ,U(2) and U (  q ) ,  
U ( q  - l ) ,  . . . ,U(2) lowering operators (Nagel and Moshinsky 1965). The resulting 
states 

(5.4) 
[ k ,  . . . k,,; ki . . . kb]  [ k l  . . . k , O ] [ O - k & .  . .- k ; ]  

[ k ,  ... k , , ] [ k ; .  . . kb]; [ k ,  . . .  k p O - k h . .  . - k ; ]  = A F ( k ) ( k , ) ( v , , ) \ O )  
( k )  ( k ‘ )  (max) 

transform irreducibly under the groups U(  p )  2 U( p - 1)  2 . .  . D  U(  1) and U(q)  2 
U(q - 1) 1. . $ 3  U( 1) and are characterised by U( p )  and U(q)  Gel’fand patterns, ( k )  
and ( k ’ ) ,  respectively (Gel’fand and Tseitlin 1950, Baird and Biedenharn 1963, Mosh- 
insky 1963). 

The remaining basis states of the U (  p ,  q )  irrep [ k ,  . . . k p ;  k’, . . . kb]  can be obtained 
from the set of states (5.4) by applying polynomials in the operators 0;. A set of 
such linearly independent polynomials is provided by the polynomials P;h’)(h’ ) (  D’,), 
corresponding to all possible U (  p )  x U(q) irreps [ h i  . . . hi01 x [ h f  . . . h i ]  and all poss- 
ible Gel’fand patterns (h ’ ) ,  (h“)  of the latter. They are associated with the following 
basis states of the U(p, q )  irrep [O; 01: 

The explicit form of P;h’)(h’ ) (  0,) can be found by applying appropriate lowering 
operators to the HWS polynomial defined in (4.4). 

To obtain a set of linearly independent solutions of (3.14), we only have to couple 
the polynomials r‘, , , , ,  )(q,,) and P;,,<,(, , \)(D:,)  to a definite U(p) x U(q)  irrep 
[ h ,  . . . h,,] x [ h i  . . . h:]  by means of appropriate S U ( p )  and SU(9) Wigner coefficients. 
For such purposes, we assume that a solution to the S U ( m )  external state labelling 
problem is known for m < n. Hence the relevant S U ( p )  and SU(q)  Wigner coefficients 
can, at least in principle, be evaluated. Each one of them involves a set of additional 
labels which we denote by ,y and x’, respectively. The result is 
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[ k ,  . . .  k,; k j  . . .  k:] 
~ [ h ,  . . . h,][hi . . . h i ] ;  

[ h ,  . . .  h,O][O-h; . . . -  h i ]  
w [ k ,  . . . k,O- k:  , . . - k’ , ]  

(max) (max) (max) 

(5.6) 
[ k ,  . . .  k,; k‘, . . .  k : ]  

[ k , .  . . k,][ki  . .  . k : ] ;  
[ k ,  . . .  k ,O][O-k~ . . . -  k ; ]  

[ k ,  . .  . k,,O-k: . .  . - k j ]  x 

( k )  ( k ‘ )  (max) 

where the set of additional labels w is given by 
w = [ h f  . . . ~ : ] x x ’ .  (5 .7)  

Since the partitions [ h i  . . . h:] are precisely those appearing in King’s formula 
(2.12) for the multiplicities, and moreover x and x’ solve the state labelling problems 
for the products [ k ,  . . . k,] x [ h i . .  . h:O] and [k’,  . . . kb] x [ h i . .  . h i ]  of U(p) and U(q)  
irreps, respectively, the number of the states (5.6),  corresponding to all possible sets 
w, agrees with that predicted by King’s rule. We have therefore found a complete set 
of simultaneous solutions of (3.14), thereby solving the SU(n) state labelling problem 
for the product of p positive-row with q negative-row irreps whenever p + q S n. 

It is easy to check that on the right-hand side of (5.7), the number of independent 
labels is equal to ( p  - 1)  x ( 4  - l ) ,  in accordance with (2.16). The 4 quantum numbers 
h i , .  . . , hl, are indeed linked by the relation 

leaving q - 1 independent labels. Moreover, a calculation similar to the (2.16) one 
shows that ,y and x’ contain i ( q  - 1)(2p - q - 2) and f( 9 - l ) ( q  - 2)  independent labels, 
respectively. 

Since the set of labels (5.7) cannot be associated directly with eigenvalues of 
Hermitian operators, the states (5.6) corresponding to the same irreps [ h ,  . . . h,O], 
[ 0 - h :  . . . - h i ]  and [ k ,  . . . kpO- k : . .  . - kj],  but to different sets w and w‘, are not 
orthogonal. Their overlap, as well as the normalisation coefficient A,, can be obtained 
by solving a recursion relation derived from a coherent state representation of U( p ,  q )  
(Quesne 1987). One might then proceed to construct an orthonormal basis by 
following a prescription recently used for other chains of groups (Le Blanc and Rowe 
1985, Hecht 1986), or any other procedure. 

I t  now remains to extend the solutions (5.6) of (3.14) to the case where p + q >  n 
to obtain a complete solution to the SU(n)  external state labelling problem. Such a 
generalisation is outlined in the next section. 

6. The general case for p + 9 > n 

Wheneverp + q > n, we may still use the two complementary chains ( 3 . 1 3 ~ )  and (3.13b), 
but the irreps of the complementary groups U( n )  and U(  p ,  q )  are to be modified as 
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follows (Quesne 1986): 

[ h  , . . .  h,O] [0 -hb  . . . -  h i ]  [ k ,  . . .  k , , - q + u - k & u . . . - k ; ]  ( 6 . l a )  
U(n)  x U(n) 3 U(n)  

U P )  x U(q)  c WP, 4 )  (6 . lb )  

Here k , ,  . . . , kn-q+( , r  k ; ,  . . . , k&,, are non-negative integers satisfying the conditions 
k ,  a.. .a kn-y+r , ,  k ;  3. . .3 k&, , and U is any integer belonging to the set {0,1,  . . . , p + 
q - n}. For a generic U(n)  irrep [ k ,  . . . kn-q+r ,  - k l - ,  . . . - k ; ] ,  the number of needed 
additional labels is now given by 

[ h , .  , . h p ]  [ h l .  . .  hb]  [ k , .  . .  kn-q+oO; k ;  . .  . kb_,O] 

fp(2n - p -  l ) + f q ( 2 n  - 9 -  1 ) - f ( n  - l ) ( n + 2 )  (6.2) 

instead of ( p  - l ) ( q  - l ) ,  as in (2.16). 
Equations (3.14a), (3.146) and (3.14d) remain unchanged, while ( 3 . 1 4 ~ )  is replaced 

by 

A set of simultaneous solutions of this modified system of equations can be written as 

X 

where the set of idditional labels w is still given by ( 5 . 7 ) .  Since x and x' now contain 
i ( n  - q +  a )  (2p + q - n - U - 1 )  +4q(2p - q - 1 )  - i ( p  - 1 )  ( p  + 2 )  and f ( q  - U )  ( q +  U -  

1 ) - ( q  - 1 )  independent labels, w provides 

tp(2n - p - 1 )  + tq(2t1- 4 - 1 )  - f (  fl  - 1)( n + 2) + U (  p + 9 - n - U )  (6.5) 

independent additional labels. Comparison with (6.2) shows that the latter number 
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exceeds that of needed labels by U (  p + 9 - n - U ) .  Hence, whenever U is different from 
0 and p + 9 - n, w contains some redundant independent labels. 

As a counterpart, in general the states (6.4) are not linearly independent as it was 
the case for the states (5.6). This is a consequence of the modification rule which 
makes some of the irreps allowed by the rules (2.11) and (2.12) disappear. Methods 
developed for other chains of groups (Quesne 1984, Le Blanc and  Rowe 1985, Hecht 
and Elliott 1985, Hecht 1985, 1986) could be used here to obtain the relations between 
the states (6.4). 

7. Conclusion 

For the most general SU( n )  irreps (corresponding to p = 9 = n - l ) ,  the solution to the 
SU(n)  external state labelling problem, as proposed in the present paper, is based 
upon the group chain U( n - 1, n - 1) = U(n - 1) x U(n - 1). The additional labels w 
include those of an  intermediate U(n - 1) irrep [ h i  . . . as well as the additional 
labels x and x‘, solving the state labelling problems for the products [k l  . . . k n - l ]  x 
[ h ;  . . .  h,Y-l] and [ k  ‘,... k ;  -,] x [ h ;  . . .  h i - l ]  of U(n -1 )  irreps. We have therefore 
obtained a recursive solution to the SU(n)  external state labelling problem: provided 
we know such a solution for S U ( n - I ) ,  we are able to construct it for SU(n) .  This 
solution reflects in a direct way the operation of King’s branching rule for the chain 
U( n )  x U( n )  3 U(n),  supplemented, whenever necessary, with King’s modification rule. 

The appearance of pseudo-unitary groups in the present context is not surprising, 
since it has recently been shown (Deenen and Quesne 1986) that the S 0 ( 6 , 2 )  model 
of SU(3) (Biedenharn and Flath 1984, Bracken and MacGibbon 1984) can be reformu- 
lated in terms of a U ( 1 , l )  group and extended to a family of n - 2  models of SU(n)  
by using higher-dimensional U( p, 9)  groups. The S0(6 ,2 )  model providing a global 
algebraic formulation of the canonical SU(3) tensor operator structure, one may suspect 
that the present solution to the SU(n)  external state labelling problem is related to 
that of Baird and Biedenharn (1964,1965). We plan to review this point in a forthcoming 
paper of the present series. 
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